Neuroblastoma: Therapeutic strategies for a clinical enigma
Shakeel Modak *, Nai-Kong V. Cheung

Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States

Abstract

Neuroblastoma, the most common extracranial pediatric solid tumor remains a clinical enigma with outcomes ranging from cure in >90% of patients with locoregional tumors with little to no cytotoxic therapy, to <30% for those >18 months of age at diagnosis with metastatic disease despite aggressive multimodality therapy. Age, stage and amplification of the MYCN oncogene are the most validated prognostic markers. Recent research has shed light on the biology of neuroblastoma allowing more accurate stratification of patients which has permitted reducing or withholding cytotoxic therapy without affecting outcome for low-risk patients. However, for children with high-risk disease, the development of newer therapeutic strategies is necessary. Current surgery and radiotherapy techniques in conjunction with induction chemotherapy have greatly reduced the risk of local relapse. However, refractory or recurrent osteoskeletal disease occurs in most patients with high-risk neuroblastoma. Toxicity limits for high-dose chemotherapy appear to have been reached without further clinical benefit. Neuroblastoma is the first pediatric cancer for which monoclonal-antibody-based immunotherapy has been shown to be effective, particularly for metastatic osteoskeletal disease. Radioimmunotherapy appears to be a critical component of a recent, successful regimen for treating patients who relapse in the central nervous system, a possible sanctuary site. Efforts are under way to refine and enhance antibody-based immunotherapy and to determine its optimal use. The identification of newer tumor targets and the harnessing of cell-mediated immunotherapy may generate novel therapeutic approaches. It is likely that a combination of therapeutic modalities will be required to improve survival and cure rates.

© 2010 Published by Elsevier Ltd.

Introduction

Clinical and laboratory research over the last three to four decades has shed considerable light on the biology of neuroblastoma (NB), the most common extracranial tumor of childhood. However, it remains one of the most enigmatic solid tumors for pediatric oncologists. On one hand, tumors may regress completely or differentiate into benign ganglioneuroblastoma without treatment, while on the other, metastatic NB in children >18 months of age at diagnosis is lethal for most patients despite aggressive multimodality therapy. Early tumor detection by screening did not reduce tumor-related mortality and low stage tumors with favorable biological markers often do not metastasize even when incompletely resected. Conversely, high-risk NB is sensitive to dose-intensive chemotherapy: a majority of patients achieve remission after induction chemotherapy, surgery and radiotherapy; but most relapse even with consolidation therapy. Rates of tumor progression and response are often age dependent: adolescents and adults usually have indolent, chemoresistant tumors compared to NB in younger children.

This clinical heterogeneity has fascinated investigators and has led to research into numerous potential markers for stratification and prognostication and into the detection of tumor antigens and pathways that can be targeted by newer therapeutic agents. Amplification of the MYCN oncogene, first described in NB patients in 1983 was one of the first genes shown to be of prognostic value in pediatric oncology and MYCN-amplification maintains its relevance as a marker of high-risk disease for patients with locoregional NB. The definition of MYCN-amplification has since been refined as ≥10 gene copies per diploid genome: tumors with 3–10 copies do not behave like MYCN-amplified tumors. To date, age and stage remain the most validated clinical prognostic markers for patients with NB. The international NB staging system (INSS) established in 1989 is currently used to stage patients with NB (Table 1). However, a new presurgical International Neuroblastoma Risk Group (INRG) Staging System was recently proposed incorporating presurgical imaging into its classification, ploidy, histologic assessment and chromosome 11q status in addition to age and stage (Table 2). The significance of the
INRGCS will require validation in prospective clinical studies. The current Memorial Sloan-Kettering Cancer Center (MSKCC) strategies and outcomes for patients with NB are summarized in Fig. 1. We discuss below current approaches to treatment of locoregional and metastatic NB.

Locoregional NB

About 50% of patients do not have evidence of metastatic disease at diagnosis, i.e., have INSS stage 1, 2 or 3 disease. Most of these patients are considered to have low-risk NB. An exception is the group of patients with tumors that are MYCN-amplified.

Non-MYCN-amplified locoregional NB

Patients with non-MYCN-amplified INSS stage 1 can be cured with surgical resection alone. However patients with non-MYCN-amplified stage 2 and 3 NB have been treated with various regimens ranging from observation alone in infants to surgery without any cytotoxic therapy to (3) intermediate-dose chemotherapy to (4) high-dose chemotherapy plus myeloablative chemotherapy with autologous hematopoietic stem-cell rescue (ASCT). The rationale for the first strategy is based on the lack of progression of non-stage 4 tumors discovered by screening programs, the limited proliferative and metastatic potential of residual post-operative disease, the severity of the long-term side effects of cytotoxic therapy, the relative lack of chemoresponsiveness of some localized NB, and the curability of recurrent low-risk localized NB. Utilizing such an approach at MSKCC, we recently reported an 84.6 ± 14% 10-year overall survival (OS) for patients with non-MYCN-amplified stage 3 NB treated without any cytotoxic chemotherapy regardless of histology, DNA index or serum ferritin. Outcome for stage 1 and 2 tumors has been similarly favorable. Equally promising results have been reported by other small single institution studies treating INSS stage 2 (or Evans stage II) patients without cytotoxic therapy. In contrast to the MSKCC approach, the children’s oncology group (COG) currently considers all stage 3 patients <574 days old at diagnosis and >574 days old with unfavorable histology to have intermediate risk disease. Such patients have been reported to have a favorable outcome with low dose chemotherapy without radiotherapy. Stage 3 patients >574 days of age with unfavorable histology are considered to have high-risk disease. Data from children’s cancer group (CCG) protocol 3891 indicate 5-year OS of 70 ± 9% for the latter group when treated with chemotherapy with or without ASCT. The MSKCC approach that

Table 1

International neuroblastoma staging system.

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Localized tumor with complete gross excision, with or without microscopic residual disease; representative ipsilateral lymph nodes negative for tumor microscopically (nodes attached and removed with the primary tumor may be positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2A</td>
<td>Localized tumor with incomplete gross excision; representative ipsilateral nonadherent lymph nodes negative for tumor microscopically</td>
</tr>
<tr>
<td>Stage 2B</td>
<td>Unresectable unilateral tumor infiltrating across the midline, with or without regional lymph node involvement; or localized unilateral tumor with contralateral regional lymph node involvement; or midline tumor with bilateral extension by infiltration (unresectable) or by lymph node involvement</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Any primary tumor with dissemination to distant lymph nodes, bone, bone marrow, liver, skin, and/or other organs (except as defined for stage 45)</td>
</tr>
<tr>
<td>Stage 4</td>
<td>Localized primary tumor (as defined for stage 1, 2A, or 2B), with dissemination limited to skin, liver and/or bone marrow (limited to infants <1 year of age)</td>
</tr>
</tbody>
</table>

Table 2

International neuroblastoma risk group (INRG) consensus pre-treatment classification system.

<table>
<thead>
<tr>
<th>INRG stage</th>
<th>Age (months)</th>
<th>Histologic category</th>
<th>Grade of tumor differentiation</th>
<th>MYCN</th>
<th>11q aberration</th>
<th>Ploidy</th>
<th>Pre-treatment risk group</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1/L2</td>
<td></td>
<td>GN maturing GNB intermixed</td>
<td>NA</td>
<td>Amp</td>
<td>A Very low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td><18</td>
<td>Any except GN maturing GNB intermixed</td>
<td>NA</td>
<td>No</td>
<td>Very low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>≥18</td>
<td>Any except GN maturing GNB intermixed</td>
<td>Differentiating</td>
<td>Yes</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td><18</td>
<td><12</td>
<td>NA</td>
<td>Hyperdiploid</td>
<td>F Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><12</td>
<td>12 to <18</td>
<td>NA</td>
<td>Diploid</td>
<td>Intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><18</td>
<td>≥18</td>
<td>NA</td>
<td>Diploid</td>
<td>O High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5</td>
<td><18</td>
<td>NA</td>
<td>Yes</td>
<td>C Very low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amp</td>
<td></td>
<td>R High</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amp: amplified; GN: ganglioneuroma; GNB: ganglioneuroblastoma; NA: non-amplified; INRG stages L1, L2, M and MS are defined by INRG staging system.
withholds cytotoxic therapy but not chemotherapy or discontinues all such therapy after surgery yields similar favorable results (100% 10-year OS) suggesting that the role of dose-intensive chemotherapy for this group of patients is not firmly established. A retrospective analysis of the large (n = 8800) INRG database did not reveal histology or DNA ploidy to be independent prognostic markers for patients with INSS stage 3 patients. The only prognostic markers that were independent prognostic in multivariate analysis were serum ferritin >92 pg/ml at diagnosis for children >18 months and chromosome 11q aberrations for children >18 months. Other large retrospective studies have reported 11q and 17q abnormalities to be poor prognostic markers for NB. In future proposed multicenter studies, the significance of these aberrations will be determined in a prospective manner.

Two uncommon clinical syndromes that are usually associated with locoregional NB (though may occasionally occur with high-risk disease) bear mentioning: (a) cord compression caused by epidural NB may lead to devastating neurological sequelae. The optimum treatment is not established: early neurosurgery to relieve cord compression may prevent onset or progression of paraparesis, while increasing the risk of subsequent scoliosis. Conversely, chemotherapy or radiotherapy may not act quickly enough to prevent neurological compromise but may be associated with a lower rate of spinal deformities. Treatment decisions may require consideration of individual clinical scenarios. (b) The rare paraneoplastic syndrome of opsoclonus-myoclonus syndrome, while associated with low stage NB can be associated with significant motor, behavioral and sleep disturbances. Recent reports on the possible therapeutic efficacy of rituximab are encouraging. It has the potential to be used as an adjunct to established therapy with ACTH and intravenous immunoglobulin and may permit reduction in steroid use for this chronic condition.

MYCN-amplified locoregional NB

Locoregional MYCN-amplified NB has a worse prognosis than its non-MYCN-amplified counterpart. Internationally, patients treated on various regimens from 1991 to 2002 with MYCN-amplified stage 1 and 2 NB had a poorer prognosis than those without MYCN-amplification, though patients with hyperdiploidy appeared to fare better than those with diploid tumors. Patients with stage 3 MYCN-amplified NB treated on CCG-3891 (n = 24) had a poorer prognosis (5-year event free survival [EFS] 25 ± 9%) despite receiving ASCT and 13-cis-retinoic acid. However, the MSKCC experience for these patients appears to be favorable with a 10-year EFS and OS of 90.9 ± 8.7% using higher dose induction chemotherapy and anti-disialoganglioside (GD2) immunotherapy with the monoclonal-antibody (MoAb) 3F8 (n = 11) with or without ASCT. Results for this group of patients treated on COG protocol A3973 that uses similar induction chemotherapy followed by ASCT are awaited.

Stage 4S NB

Infants with localized primary tumors with NB dissemination limited to skin, liver and mild (<10%) bone marrow without bone involvement often have disease that resolves spontaneously without therapy and have a favorable outcome, though extensive liver involvement may initially lead to cardiorespiratory compromise. A similar “wait and watch” strategy may also be successful for some infants with localized tumors that do not meet the stage 4S definition. Though infants with hyperdiploid disease may be predictive.

Stage 4 NB <18 months of age

For biological reasons that are as yet unclear, children who are <18 months old at diagnosis and have tumors that are not MYCN-amplified have a far superior prognosis when compared to older patients. The favorable prognosis for children <12 months of age with non-MYCN-amplified tumors has been well-established. Recent studies have extended the age for reported favorable outcomes to 18 months of age (Fig. 2) and the current recommendations are to treat this group of patients with intermediate-dose chemotherapy without ASCT.
High-risk metastatic NB

Patients >18 months of age with stage 4 NB and those <18 months of age with MYCN-amplified stage 4 disease constitute the one of the most challenging group for pediatric oncologists (Fig. 2). Treatment consists of induction chemotherapy to achieve remission, local control with surgery and radiotherapy followed by consolidation of remission with ASCT oral 13-cis-retinoic acid (CRA), with or without antibody immunotherapy.

Dose-intensive induction chemotherapy

The goal of induction chemotherapy is rapid reduction of the entire tumor burden: both metastatic and primary sites, the latter to facilitate complete resection of soft tissue disease. Various combinations of cyclophosphamide, ifosfamide, doxorubicin, cisplatin, carboplatin, etoposide, topotecan and vincristine have been used with CR/VGPR rates of 50–80%.41–45 Improved supportive care has facilitated the administration of dose-intensive regimens that may have improved response rates over the last two decades.

Surgery

Although most tumors respond to chemotherapy, surgery is critical to achieving complete remission (CR) in primary site for most patients, since radiotherapy alone is generally unable to sterilize soft tissue sites.46 Gross total resection was correlated with reduced risk of local recurrence in retrospective analyses, especially when combined with dose-intensive induction chemotherapy and local radiotherapy.47 For abdominal primaries, the thoracoabdominal approach allows better visualization of great vessels and may result in more complete resection.48

Radiotherapy

NB is considered to be a radiosensitive tumor and radiotherapy is a critical component of local control of the primary site where it is applied in the setting of minimal residual disease post-induction therapy and surgery. Radiotherapy has also been applied to metastatic sites of bulk disease after achieving a chemoresponse.49 Current protocols usually employ a dose of 2100 cGy to the primary site as consolidation therapy via either fractionated or hyperfractionated regimens, though randomized trials have not been performed.50 At MSKCC a combination of dose-intensive chemotherapy, surgery and hyperfractionated radiotherapy to the primary site at a dose of 2100 cGy resulted in a local relapse rate of <10%, a critical path to achieving long-term cure.47

Myeloablative therapy

Patients treated with modest doses of induction chemotherapy appeared to benefit from total body irradiation (TBI)-based myeloablative chemotherapy followed by ASCT using bone marrow or peripheral blood stem cells especially after the addition of CRA.18 This led to ASCT (without TBI) being accepted by most investigators as key to improving survival. However, the role of additional myeloablative therapy to dose-intensive induction therapy has not been studied prospectively. Tandem, triple, allogeneic, and combined 131I-metaiodobenzylguanidine (MIBG)/ASCT are being explored in clinical trials, some with encouraging results.16,51–53 A new phase III COG study randomizes patients to single versus tandem transplants. At MSKCC, dose-intensive induction therapy was adopted since 1987, and myeloablative chemotherapy did not reduce the incidence of CNS or systemic relapse.54

Immunotherapy to maintain remission

GD2, a surface glycolipid antigen that is ubiquitous and abundant on neuroblastoma cells is an ideal target for immunotherapy.55 Its expression on normal tissues is restricted to neurons and by human lymphocytes,63 cultured monocytes,64 and granulocytes.65 It utilizes both FcγRI and FcγRIII Fc receptors for neutrophil ADCC (antibody-dependent cell-mediated cytotoxicity) and the CR3 receptor for iC3b-mediated cytotoxicity.66,67 Based on strong in vitro evidence showing the synergy between 3F8 and granulocyte-macrophage colony stimulating factor (GM-CSF),68 a phase II study was carried out in patients with chemorefractory disease. It
and the constant regions of human IgG1-K.69 It demonstrates ADCC.

3 years), PFS improved to 73% ± 6% (among survivors) was 43 ± 8%.

In the most >12 months of age, a significant improvement in long-term EFS was observed when compared to historical controls.59 In the most group of patients, but cure remains out of reach for most. Secondly, obstacles to achieving cure remain. Firstly, 20–50% of patients have

and CDC (complement-dependent tumor cytotoxicity) of NB and melanoma cells in vivo.70–72 Based on encouraging clinical responses in phase I studies, ch14.18 was tested in large phase II studies as consolidation therapy for stage 4 NB (German NB90 and NB97 studies). For the 166 patients >12 months at diagnosis EFS was similar in patients receiving ch14.18 when compared to patients on maintenance chemotherapy. However, OS was improved, and rate of bone marrow relapse reduced, in patients treated with ch14.18.78 Recently early data from the COG randomized phase III trial of ch14.18 plus cytokines after ASCT (ClinicalTrials.gov NCT00026312) demonstrated a clear survival advantage in patients receiving immunotherapy when compared to untreated controls.74

Differentiation therapy with retinoids

In vitro, retinoids, vitamin A derivatives, induce differentiation and growth arrest of malignant NB cells probably through binding to retinoid acid receptors.75 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 All-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76 Intracellular retinol is metabolized to all-trans retinoic acid, which then activates a number of nuclear receptors that heterodimerize and regulate gene transcription.76

Treatment approaches for refractory or relapsed NB

Despite advances in treatment and improvement in survival for patients with high-risk NB over the last three decades, significant obstacles to achieving cure remain. Firstly, 20–50% of patients have soft tissue or osteomedullary NB that is refractory to induction chemotherapy. The advent of second line chemotherapy, immunotherapy and targeted therapies has improved survival for this group of patients, but cure remains out of reach for most. Secondly, a majority of patients who achieve remission relapse in bone/BM or less commonly, in soft tissue sites. Newer strategies using non-cross-resistant therapies are required to affect cures in this group. Thirdly, as it becomes clear that the CNS is a sanctuary site for NB in some patients, isolated CNS relapses are being detected in a small, though increasing number of patients. The prognosis for this group of patients was hitherto dismal,79,80 but recent advances potentially can significantly improve survival in this group of patients.81,82

Treatment for relapsed or refractory soft tissue or osteomedullary disease

Several studies have focused on therapies for relapsed NB due to the relatively large number of patients who are resistant to standard therapies. With the advent of newer treatments and the use of increasingly sophisticated modalities to detect asymptomatic relapse, OS time after relapse has increased.83,84 Currently open trials are summarized in Table 3 along with their ClinicalTrials.gov identifiers.

Second line chemotherapy

Over the last two decades several new chemotherapeutic agents with anti-NB activity have been studied. The camptothecins topotecan85–87 and irinotecan88,89 have proven anti-NB activity and have been extensively used in salvage regimens. Until recently the combination of cyclophosphamide and topotecan was the first line salvage regimen studied by the COG. With the incorporation of this combination into front line therapy in the current COG protocol for newly diagnosed high-risk NB, it is likely that a further well-studied combination: irinotecan plus temozolomide90 will be increasingly utilized for resistant NB. Both combinations have demonstrated anti-NB utility though CR/VGPR are rare. At MSKCC, camptothecins are combined with high-dose cyclophosphamide both for anti-NB effect and to permit the administration of the murine antibody 3F8 for consolidation of response to chemotherapy.90 Other new chemotherapeutic agents with potential anti-NB activity include ABT-751, an oral anti-tubulin agent, though no complete or partial responses were observed in the initial phase 1 study.91

MoAb mediated Immunotherapy

Unmodified antibodies

MoAb 3F8 in combination with GM-CSF has been shown to be highly effective against chemorefractory bone marrow NB,92 with a histologic marrow CR response of >80%.92 Similar response rates are unavailable for ch14.18 when used alone or in combination with cytokines. Results have been less impressive for patients with significant disease burden. Beta glucans (BG), complex carbohydrate polymers bind to CR3 and enhance iC3b-mediated cytotoxicity initiated by complement-activating antibodies such as 3F8.93–95 In a phase I study barley-derge BG in combination with 3F8 led to objective responses in 40% of patients. Two patients developed immune thrombocytopenia as DLT (dose limiting toxicity) though MTD was not reached.96 A phase I study of yeast derived BG + 3F8 is currently under way. At MSKCC current initiatives are focused on producing highly effective humanized forms of 3F8 as well as other humanized antibodies for other tumor antigens.

Immunocytokines

Immunocytokines can activate and redirect effectors to human tumors. The human interleukin 2 (rIL-2) molecule was linked to the COOH terminus of each human IgG1 heavy chain of ch14.18 to create the immunocytokine ch14.18-IL2 that retained the specificity and the effector function of ch14.18,97 activated human effector cells,98 and suppressed xenografts.99 In an effort to further
reduce anti-mouse antibody responses, hu14.18-IL2 was produced and used in clinical trials. Twenty-seven children with NB were treated in the phase I COG study with MTD of 12 mg/m²/day. DLTs included prolonged neutropenia, anaphylaxis, hyperbilirubinemia and hypotension and half life was 3.3 h. In the recently concluded phase II study, preliminary response rate of 21% for patients bone marrow disease was reported while patients with bulky disease did not respond.

Radiolabeled antibodies

Due to its radiosensitivity, NB is an attractive tumor for radio-immunotherapy (RIT). RIT has the potential to target radiation to metastatic sites while avoiding the toxicities of external beam radiation which can be severe in young children. ¹³¹I-3F8 targets selectively to NB primary tumors and metastatic sites in lymph nodes, BM, and bone with superior sensitivity when compared to ¹³¹I-MIBG. Safety was initially established in a phase I study in which a dose of 28 mCi/kg was reached without MTD being reached. Toxicities included self-limited pain, fever and rash, followed by myelosuppression that required BM rescue. Other than hypothyroidism, no extramedullary toxicity was observed. ¹³¹I-3F8 at a dose of 20 mCi/kg followed by autologous BMT was added to a multimodality program for high-risk NB patients (n = 35): the MSKCC N7 protocol. With continued followup (6–10 years from diagnosis), overall survival for NB patients newly diagnosed at >18 months of age is ~40%. Preclinical studies indicate that...

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Currently open trials for refractory or relapsed stage 4 neuroblastoma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Agent/s</td>
</tr>
<tr>
<td>NB-specific trials</td>
<td></td>
</tr>
<tr>
<td>Antibody-based</td>
<td>3F8 + GM-CSF</td>
</tr>
<tr>
<td></td>
<td>Heat-modified 3F8 + GM-CSF</td>
</tr>
<tr>
<td></td>
<td>3F8 + yeast-derived beta glucan</td>
</tr>
<tr>
<td></td>
<td>¹³¹I-3F8 + bevacizumab</td>
</tr>
<tr>
<td></td>
<td>¹³¹I-3F8 intra-Ommaya</td>
</tr>
<tr>
<td></td>
<td>Humanized 14.18X322A</td>
</tr>
<tr>
<td></td>
<td>¹³¹I-H9B intra-Ommaya</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Whole cell vaccine modified to secrete IL2 and lymphotactin</td>
</tr>
<tr>
<td></td>
<td>Trivalent vaccine + adjuvants</td>
</tr>
<tr>
<td></td>
<td>Multivalent vaccine</td>
</tr>
<tr>
<td>Anti-angiogenic</td>
<td></td>
</tr>
<tr>
<td>Chemotherapy-based</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irinotecan + bortezomib</td>
</tr>
<tr>
<td></td>
<td>Topotecan, vincristine + doxorubicin</td>
</tr>
<tr>
<td></td>
<td>Melphalan + buthionine sulfoximine</td>
</tr>
<tr>
<td></td>
<td>ABT-751</td>
</tr>
<tr>
<td>Cell-based</td>
<td>Chimeric receptor-transduced T-cells + anti-CD45 antibody</td>
</tr>
<tr>
<td></td>
<td>Chimeric receptor-transduced T-cells</td>
</tr>
<tr>
<td></td>
<td>Haploidentical NK cells + IL2</td>
</tr>
<tr>
<td></td>
<td>Haploidentical NK cells + 3F8 + GM-CSF</td>
</tr>
<tr>
<td>Differentiating agents</td>
<td>Fenretinide (intravenous)</td>
</tr>
<tr>
<td></td>
<td>Fenretinide (oral lipid matrix)</td>
</tr>
<tr>
<td>Other agents</td>
<td>Nifurtimox</td>
</tr>
<tr>
<td></td>
<td>Nifurtimox + cyclophosphamide + topotecan + zoledronic acid</td>
</tr>
<tr>
<td></td>
<td>Zoledronic acid + cyclophosphamide</td>
</tr>
<tr>
<td>¹³¹I-MIBG-based</td>
<td>¹³¹I-MIBG (no-carrier added)</td>
</tr>
<tr>
<td></td>
<td>¹³¹I-MIBG + carboplatin, etoposide, melphalan</td>
</tr>
<tr>
<td></td>
<td>¹³¹I-MIBG + irinotecan and vincristine</td>
</tr>
<tr>
<td></td>
<td>¹³¹I-MIBG + arsenic trioxide</td>
</tr>
<tr>
<td></td>
<td>¹³¹I-MIBG + vorinostat</td>
</tr>
<tr>
<td>Targeted small molecules</td>
<td>CEP-701</td>
</tr>
<tr>
<td>Trials for pediatric tumors including NB</td>
<td></td>
</tr>
</tbody>
</table>
the combination of targeted radiotherapy and anti-angiogenesis effectively suppressed NB xenografts even at relatively low doses of 131I-3F8. A clinical trial based on these observations is currently underway at MSKCC in which 131I-3F8 is dose-escalated while the dose of the anti-angiogenic agent bevacizumab is kept constant. DLTs have not been encountered at the first two dose levels.106 131I-ChCE7, a MoAb that targets an L1 isoform has been used for successful radioimmunodetection of NB with sensitivity and specificity superior to 131I-MIBG.107

Adaptive cell therapy

Dendritic cells

NB derived gangliosides have been shown to inhibit dendritic cell differentiation and function, and may play a role in tumor-induced immunosuppression and tumor escape from surveillance.108,109 Several methods of producing functional dendritic cells with anti-NB activity have been described in children.110,111 In two reported phase I studies using autologous dendritic cells pulsed with autologous tumor cell RNA or cell lysate in children with stage 4 NB safety and tumor-specific humoral immune responses in some patients were described but objective responses were not observed.112,113

Natural killer (NK) cells

NK cells demonstrate anti-NB activity via several mechanisms: (a) NK cells bear activating receptors whose ligands are expressed on NB (b) they express CD16 a receptor required for binding MoAb (e.g., 3F8 or Ch14.18) and triggering NK-mediated cytotoxicity.114-116 Among children with high-risk NB undergoing autologous stem-cell transplantation plus 3F8 immunotherapy, improved overall and progression-free survival are associated with the absence of one or more HLA class I ligands for the patient’s NK cell inhibitory killer inhibitory receptor (KIR).117 These results suggest that NK tolerance is modified after ASCT, and that KIR-HLA genotypes may influence MoAb-based immunotherapy.

T-cells

The anti-NB activity of T-cells is limited by the low expression of HLA antigens on NB. T-cells can be retargeted using antibody-based chimeric receptors to overcome this and early clinical investigations using these engineered T-cells have demonstrated elicitation of anti-NB immune responses.118,119

Vaccines

Several preclinical approaches have been tested including whole cell vaccines, GD2 mimics, anti-idiotypes, DNA and peptide injection. Whole cell vaccines engineered to express multiple transgenic immunostimulatory molecules can stimulate the immune system. In patients, NB cell lines and autologous NB tumor transduced with cytokines have elicited immune responses and have not been associated with major side effects.120-122 A1G4, the anti-idiotypic MoAb for 3F8 was the first anti-idiotypic antibody for neuroblastoma to go into clinical trial. In a phase I study of children with relapsed NB or high-risk GD-positive solid tumors at MSKCC, A1G4 was administered intravenously at 0.1, 0.3 and 1 mg/kg for a total of 10 doses. There were no DLTs. Anti-GD2 antibody responses were detected at all dose levels55 (Cheung et al., unpublished data). 1A7, another anti-idiotypic MoAb123 directed against 14G2a was administered in conjunction with the adjuvant QS-21 patients with high-risk NB in CR or VGPR. Treatment was well tolerated, typically with local reactions. Anti-1A7 responses were observed in all patients. Encouraging long-term survival was observed in patients treated in first CR, 17 of 20 patients had no evidence of disease 47 months from study entry. However, only 1 of 11 patients in subsequent CR/VGPR survived.124 Current clinical vaccine trials include modifications of whole cell vaccine approaches and GD2 mimics conjugated to newer more potent immune stimulators.125,126

131I-MIBG therapy

MIBG, a guanethidine derivative, is taken up >90% NB tumors by both active and passive mechanisms. 131I labeled MIBG (131I-MIBG) has been used to target radiation for the therapy of metastatic NB for the last three decades. Treatment is well tolerated, common side effects limited to myelosuppression (often necessitating stem-cell support),127 biochemical hypothyroidism and transient sialoadenitis.81 131I-MIBG monotherapy achieves responses in 18–37% of refractory or relapsed patients, usually at doses >12 mCi/kg, though responses are usually transient. Dose-escalating 131I-MIBG therapy beyond 18 mCi/kg by administering two doses did not improve response rates.128 The addition of high-dose chemotherapy to 131I-MIBG therapy resulted in increased toxicity without improving efficacy.129-132 Current studies are investigating the role of radiosensitizers such as irinotecan, topotecan, and arsenic trioxide in possibly enhancing the anti-NB activity of 131I-MIBG. A no-carrier added form of 131I-MIBG that has the potential to enhance targeting of radiation is being tested in a phase I study.

Targeted therapies

Anaplastic lymphoma kinase (ALK)

ALK is a receptor tyrosine kinase implicated in the genesis of several malignancies including lymphoma and infantile myofibroblastic tumors possibly by modifying the responsiveness of the mitogen-activated protein kinase pathway to growth factors. ALK kinase is constitutively activated by gene amplification at the ALK locus in several NB cell lines, though ALK amplification is rarely observed in NB tumor samples.133,134 In a recent study, ALK was identified as a familial NB predisposition gene.135 Activating mutations or rearrangements can also be somatically acquired in 8–16% of sporadic NB cases. Screening NB cell lines with pharmacological antagonists of the ALK kinase domain has identified ALK as a molecular target.137 ALK inhibitors are currently being tested for therapy of anaplastic large cell lymphoma and may potentially benefit a subset of NB patients.

TrkB

The neurotrophin receptor TrkB is preferentially expressed in aggressive NB tumors and the BDNF/TrkB signaling pathway have been shown to form an autocrine loop in these tumors.138,139 Several components of the pathway including Trk tyrosine kinases, PI-3-kinase, Akt and its downstream members can be targeted by small molecule inhibitors. A drug targeting Trk tyrosine kinases (CEP-751) has shown preclinical efficacy against NB mouse xenografts140 and is currently in a NB clinical trial.

Insulin-like growth factor-1 (IGF-1)

IGF-1 regulates growth of NB cells via AKT and MAP kinase pathways.141 IGF-1 receptor antagonists have been proven to have anti-NB activity in xenograft models.142,143 Unlike sarcomas, it is not clear if IGF-1 receptor is overexpressed on NB cells. Nevertheless, NB patients have been included in ongoing phase I studies of IGF-1 receptor inhibitors.

p53 pathway

p53 gene mutations are rare in NB at diagnosis.144-145 Chemo-therapy-induced apoptosis in MYCN-amplified tumors may be p53 dependent.146 However, p53 inactivation via mutation or
MDM2 activation is often observed in relapsed tumors and in NB cell lines and is associated with drug resistance.147,148 Reactivation of the p53 pathway, e.g., with nutlin 3 that inhibits MDM2 may reverse drug resistance149 and may have a role in therapy of relapsed neuroblastoma. Selective checkpoint kinase (e.g., Chk1) inhibitors may also have utility in enhancing the efficacy of DNA-damaging agents especially when the p53 pathway is defective.150 One of the mechanisms of anti-NB activity of HDAC inhibitors in vitro is the restoration of the p53 pathway in NB cells lines.151 Anti-NB activity has also been demonstrated in NB xenograft models.152,153 The FDA approval of HDAC inhibitors for other malignancies may permit their rapid testing for patients with resistant NB.

Angiogenesis

High-risk NB tumors show evidence of increased tumor angiogenesis with increased microvessel density. This pro-angiogenic phenotype is promoted by growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) transforming growth factor alpha (TGFA) and platelet-derived growth factor A (PDGF-A). An association between increased levels of the matrix metalloproteinases MMP-2 and -9 and advanced tumor stage has also been observed. The integrins alpha(v)beta3 and alpha(v)beta5 – markers of angiogenic endothelium – were also found to be more highly expressed in blood vessels of high-risk NB.154 Several drugs have shown anti-angiogenic activity in preclinical NB models; these include chemotherapeutic agents such as vinblastine and topotecan, retinoids155 and thalidomide.156 Specific anti-VEGF strategies tested include the anti-VEGF humanized monoclonal-antibody bevacizumab,157 and VEGF-TRAP.157 In a recent completed phase I trial of bevacizumab in children, treatment was well tolerated. However, no objective responses were found.158 Ongoing phase I studies are testing other anti-angiogenic molecules in children with NB. It is unlikely that these molecules will have efficacy as single agents; combination with chemotherapy or radiotherapy will likely be necessary for clinical responses.

Other therapies

In preclinical studies, zoledronic acid appears to have anti-NB activity on bony metastases by inhibiting osteoclasts as well as direct suppression of tumor cell proliferation.159 It is currently being tested in a phase I study.

The importance of PI3K/Akt pathway in maintaining NB cell growth141,160 has led to interest in examining possible anti-NB activity of inhibitors of this pathway in the clinic. Several drugs including chemotherapeutic agents inhibit PI3K/Akt but preliminary clinical data on specific inhibitors such as rapamycin or temsirolimus used as single agents are disappointing. Perifosine, a synthetic alkylphospholipid accumulates in cell membrane and disrupts PI3K/Akt and MAP kinase pathways and is currently being studies in phase I studies in patients with NB.161

Treatment of CNS relapse

The prognosis for NB patients experiencing isolated CNS relapse has been grim with median survival of 5.3 months.19,165 A recent treatment strategy that utilizes intrathecal RIT as part of a multimodality regimen has shown great promise and may radically improve prognosis for patients with relapsed CNS NB.81,82 17/21 patients treated with a combination of surgical resection of CNS parenchymal disease, craniospinal radiotherapy, chemotherapy with irinotecan and temozolomide and RIT with131I-3F8 or131I-8H9 survive 7–74 months (median 33 months) after isolated CNS relapse.80 MoAb 8H9 is a murine IgG1 against cell surface antigen 4ig-B7H3, which is present on many solid tumors, but restricted on normal tissues particularly normal CNS tissues.162 In an ongoing phase I study of131I-8H9, DLT was not encountered at treatment doses from 10 to 70 mCi. Targeting of leptomeningeal disease was demonstrated by124–81I-8H9 scans.163 Calculated mean radiation dose to the cerebrospinal fluid (CSF) was 36.3 (range 12.8–106) cGy/mCi; mean blood dose was 2.5 cGy/mCi.

Conclusions and future directions

The divergent clinical presentations and outcomes of this relatively rare pediatric tumor have fascinated pediatric oncologists caring for patients with NB over the last several decades. The improved understanding of NB biology has provided a strong rationale for risk group stratifications where cytotoxic therapy can be reduced or eliminated for about 30–40% of children with NB, e.g., those with locoregional/4S disease, thus avoiding the long-term side effects of such therapy. However, major challenges still remain for children diagnosed with stage 4 NB at >18 months of age or those whose tumors are MYCN-amplified. While modern dose-intensive chemotherapy, aggressive surgery and local radiotherapy succeed in obtaining CR/VGPR, cure rates are still <35% for most treatment centers. Refractory soft tissue disease (e.g., retroperitoneal, liver, and lung), although less common than resistant osteomedullary metastases, is often harder to cure. The typical scenario of osteomedullary relapse despite achieving CR/VGPR, demands urgent attention given to the biology and treatment of minimal residual disease. MoAb 3F8 appears to be effective for chemorefractory osteomedullary disease and is associated with prolonged remission both at MSKCC and in neuroblastoma treatment centers in Hong Kong (Godfrey Chan et al., 2009, personal communication). With the initiation of a phase III randomized study, 3F8 may become more widely available and be more effectively utilized. With improved systemic control and prolonged survival, relapses at sanctuary sites have become the next hurdle. A promising multimodality regimen employing MoAbs has brought new hope for patients with CNS metastases once considered to be uniformly lethal.

Young children with NB are reaching toxicity limits from dose-escalation of chemotherapy.141,146,164 While high-dose chemotherapy is important in achieving remissions, long-term side effects including secondary leukemia and organ failures are high prices to pay. As OS improves, more chronic issues related to cytotoxic therapies, e.g., hearing deficit, delayed growth and developmental problems159,165 are not uncommon. Although novel drugs or small molecules directed at specific pathways or targets will be found, it is unlikely they will change the outlook of neuroblastoma as single agents. A better understanding of the interplay between pharmacogenomics, tumor and its microenvironment, is critical. A discipline to integrate and exploit all these different modalities in the appropriate clinical context is essential in order to achieve the ultimate endpoint, i.e., curing patients and improving their quality of life.

Conflict of interest statement

Supported in part by grants from the National Cancer Institute (CA61017, CA72868, CA134274, and CA106450), Bethesda, MD; Hope Street Kids, Alexandria, VA; the Katie’s Find A Cure Fund, New York, NY; and the Robert Steel Foundation, New York, NY.

References

